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Pore size distribution, grain growth, and the 
sintering stress 
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The effects of a pore size distribution and of the pore separation on the sintering stress is 
examined using a simple model. The sintering stress is found to be proportional to the mean 
of the pore sizes weighted according to the Voronoi cell pertaining to each pore, rather than 
to the simple pore size average. Large heteropores are shown to have little effect on the mean 
effective sintering stress. Decreases in pore coordination number of such pores, resulting from 
grain growth can significantly increase the stress intensification factor. The near-constancy of 
the sintering stress, observed experimentally for many powders over a wide range of sintered 
densities, does not directly fol low from the simple model. It is argued that this constancy 
results from pore shrinkage, due to densification, which is compensated by pore growth due 
to coarsening. 

1. Introduct ion 
Practical powder compacts contain imperfections that 
affect their microstructural development and their 
sintering behaviour very significantly. These imper- 
fections are well known but very difficult to avoid 
completely: inhomogeneous particle and pore dis- 
tributions, either in the green powder compact or 
developing as a result of abnormal grain growth and 
pore break away, are the source of many of the 
undesirable features in sintered bodies. 

In considering the densification process of hetero- 
geneous powder compacts, the presence of inhomo- 
geneities must be taken into account and considered 
together with grain growth or coarsening to reach an 
understanding of the sintering process. An important 
parameter in characterizing densification is the sinter- 
ing stress [1], Z/qS, (also called the sintering force [2], 
the sintering potential [3], or the sintering pressure [4]) 
where Z is the mean stress on the grain boundaries or 
in the skeleton of solids and ~b is the ratio of overall 
cross-sectional area to load bearing area, and how it is 
affected by coarsening or grain growth and by the 
presence of a pore size distribution. The present paper 
attempts to elucidate these processes by examining 
simple models of pore distributions and relating these 
to experimental determinations of the sintering stress. 

Several investigators have considered the evolution 
and the role of microstructure, and its effects on 
sintering of powder compacts. Perhaps the first ones 
to emphasize this aspect of densification were Rhines 
and his coworkers [1, 5], who focussed on the struc- 
tural evolution of the pore network, when most other 
researchers were attempting to correlate diffusion data 
from traditional tracer diffusion experiments with 
those extracted from sintering of powder compacts. 
These comparisons most often used highly abstracted 
representations, such as the two-sphere model, in the 
data analysis [6, 7]. Gregg and Rhines [8] departed 
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from this direction and attempted to measure the 
sintering stress (or sintering force) from zero-strain 
rate conditions observed during tensile loading of 
sintering copper compacts. Generally, for these cop- 
per sphere compacts, the sintering stress increased 
with increasing density. These authors successfully 
correlated the measured sintering stress with the 
quantitative stereological data obtained on their 
specimens. More recently, De Jonghe el al [9], and Raj 
et al [4] used a different, and perhaps somewhat 
simpler, experimental technique to determine the 
sintering stress. The simultaneous measurement of 
creep and densification led to the interesting obser- 
vation on all ceramic powder systems studied so far 
that, at constant applied stress, the ratio of the densi- 
fication strain rate over the creep strain rate is constant 
fi'om the onset o f  densification, over a wide range of 
sintered densities. This finding, indicating that the 
sintering stress is constant, is in contrast to the earlier 
observations of Gregg and Rhines who found the 
sintering stress for copper sphere compacts to increase 
monotonically for most of the same density range. In 
this paper some possible reasons are offered that may 
explain this difference in evolution of the measured 
sintering stresses. 

Effects of particle size distribution on densification 
rates were analysed by Coble [10], who treated this 
problem by taking into account the effects of the 
strain rate mismatch associated with the different local 
unconstrained sintering rates of particle pairs. Here, a 
related procedure is followed to solve for the densifi- 
cation strain rate of stress-coupled pore assemblies. 
Formal consideration of the importance of the back- 
stresses generated by differential densification that 
results from heterogeneous regions of inclusions in 
powder compacts was presented by Hsueh et al [3], by 
Raj et al [4, 11], and by Scherer [12]. These treatments 
considered explicitly the interaction of the mismatch 
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backstresses with the sintering stress. An experimen- 
tally based analysis by De Jonghe et al [1], and a study 
by Scherer [13] showed that these backstresses were 
simply viscous, and that viscoelastic stresses do not 
accumulate in a sintering body. Therefore, the time- 
dependent viscoelastic problem need not be solved, 
and quasi-steady state conditions can be assumed 
when formulating the instantaneous self stress in 
densification of heterogeneous powder compacts. 

The relationship between the sintering stress, which 
is the equivalent externally applied stress, and the 
effective mean stress on the grain boundaries follows 
from a geometrical analysis. In general, this analysis 
would be complex. Beer6 [14, 15] considered this 
relationship for uniform pore networks equilibrated at 
some fixed densities, and defined the stress intensifi- 
cation factor, ~b, as providing the relationship. Vieira 
and Brook [16] fitted these calculations to an exponen- 
tial expression, which was later verified experimentally 
by Rahaman et al [17] in a set of creep-sintering 
experiments. The presence of large heteropores in a 
fine-por e matrix can both affect ~b as well as the sinter- 
ing stress. The model used here considered the effects 
of large heteropores on the sintering stress and on the 
stress intensification factor, ~b. 

Practically, the importance of non-uniformity in 
powder compacts in obstructing the production of 
high quality sintered products has been well 
documented. For example, Rhodes [18] studied the 
effects of agglomeration on sintering, and made the 
important observation that the full potential of fine 
powders can only be realized when agglomerates are 
eliminated. The full significance of this observation 
was later made evident by the use of near-monosized 
powders by Pober et al [19]. In another example, 
Dynys and Halloran [20] demonstrated that the den- 
sification rate of a green compact decreases with 
increasing agglomerate content. For some ZnO 
powder compacts containing dispersions of SiC 
particlesl De Jonghe and Rahaman [21] demonstrated 
a significant reduction in the sintering rates compared 
to single-phase compacts, as the volume fraction of 
inclusions increased. The severity of this reduction in 
sintering rates of particulate composites increased 
with decreasing dispersed particle size, an effect not 
predicted by a viscous or viscoelastic analysis, which 
could be attributed in part to the increased tendency 
of the dispersed phase to cluster as its particle size 
decreases. One form of cluster formation was 
addressed by Lange [22] who considered the possible 
development of undeformable percolation skeletons 
by the dispersed phase. Lange and Davis [23] also 
reported on the sintering of agglomerated powder 
compacts and discussed the possible role of the pore 
coordination number, concluding that grain growth 
may have to preceed densification if this number is too 
high. The effects of the pore coordination number and 
the presence of isolated large pores is also considered 
here and related to the sintering stress. 

2. M o d e l  
To examine the behaviour of a pore distribution, a 
one-dimensional model, as shown in Fig. 1, is adopted. 
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Figure 1 One-dimensional model of a string of N pores contained in 
a length l between two solids. 

A string of N pores is contained in length l of grain 
boundary between two solids. The ith pore has a 
radius r i and is separated from the (i + 1)th pore by 
the grain boundary segment of length xi. The overall 
stress intensification factor q5 for this system is simply 

while the stress intensification factor of the ith uncon- 
strained segment is 

(~ = G/x,  (2) 

(It is noted here that q5 - s163 which does not 
equal Y#(G/x~).) 

The effective sintering stress on x~, that is the mean 
stress exerted on the free segment xi, is 

Yv = 7q~,(1/r, + l/re+l)~ 2 (3) 

(The effects of the grain boundaries, introducing 
a grain size dependent term in Equations 1 and 2, 
as discussed by Cannon [3] and by De Jonghe and 
Rahaman [1], is ignored here. It could, in principle, be 
accommodated by choosing an effective r~ that is 
slightly different from the physical one.) 

The constrained displacement rate of the ith 
segment is then 

~, = K(Z, + ajT)/x~ (4) 

where K is a kinetic constant and a~ are the com- 
patibility stresses that are needed to have the displace- 
ment rate equal for each segment to the overall dis- 
placement rate ~. Since the ai are self-stresses they 
must obey 

N 

Z - ix ,  = o (s) 
1 

Multiplying both sides in Equation 4 with x~ and 
summing then gives 

= K Y,,x, Z x3 (6) 
1 

Z~xj is also the force exerted on the unconstrained ith 
segment, so that with Equation 5 the total force, F, 
exerted on the boundary of length l is 

N N 

F = ~, Fi = • Zixi (7) 
1 1 

Also, by definition one has 
N 

F,./Z - Zr (8) 
1 



From Equations l to 3, 6 and 7 it follows that 

if it is assumed that the first and the last term of the 
summation have little effect on the total sum. This 
becomes a good approximation for N sufficiently 
large. With ~ ) denoting the arithmetical average, 
Equation 9 may be written as 

Y, = 7 (G , / r~ ) / ( x , )  (10) 

Equation 10 establishes the relationship between the 
details of the microstructure of the model and the 
macroscopic value of the effective sintering stress, Z. If 
Gi and rj are statistically uncorrelated then one has 

(G, / r i )  = ( G , ) ( 1 / r , ) '  (11) 

so that, from Equations 2 and 10, it would follow that 

7[<G,>/<x~>]<l/ri> = 7~b<l/r,> (12) 

Then, one would obtain the usual expression for the 
driving force of sintering, Z/(~, as the mean curvature 
of the pores. Equation 11 indicates, however, that this 
result is only valid if the pore spacing and the pore 
radii are statistically strictly independent. This is 
very unlikely to be satisifed in any powder compact. 
For example, a large heteropore is separated from 
its smaller neighbours by approximately the particle 
size, as is evident in the partly sintered microstruc- 
ture shown in Fig. 2a. Equation 9 may also be written 
as follows, if end effects are again ignored in the 
summation 

N 

Z = '/ Z [(G, § G i+ , ) /2 ] ( l / r i+ l ) /N(x i>  (13) 
i 

The term (Gi + Gi+l)/2 has the same meaning as the 
Voronoi cell pertaining to the (i + l)th pore. In 
general then, the value of the sintering stress will not 
correspond to the mean curvature of the pores as 
derived, for example from a stereological analysis; 
rather the curvature of the pores will need to be 
weighted according to the size of their associated 
Voronoi cell. This makes the derivation of a valid 
sintering stress from quantitative microscopy far more 
difficult, except in those cases where the validity of 
Equation 11 can be clearly established. 

The quantitative extension of the argument to an 
irregular, continuous three-dimensional pore net- 
work is not straightforward, since Voronoi cells can- 
not be constructed readily. It should, however, be 
expected that the macroscopic sintering stress will 
again depend on pore curvature weighted by a 
measure of local pore separation. 

3. E f f e c t s  o f  i s o l a t e d  large pores  
Isolated large pores are often present in green or 
partly sintered powder compacts. As an example, a 
partly sintered, heterogeneous powder compact of 
MgO is shown in Figs 2a and 2b. The effects of the 
presence of a limited number of large pores in a fine- 
pore matrix on the sintering stress and on the stress 
intensification factor can, in part, be assessed by con- 
sidering a modified version of Fig. 1. In the original 

Figure 2 (a) Microstructure of partly sintered MgO compact, 
bimodal pore structure (polished surface). (b) Microstructure of 
MgO compact upon further sintering, more uniform pore structure 
(polished surface). 

pore distribution, Fig. 3a, containing N pores, a large 
pore of radius rL is inserted to replace a small one 
where rL >> r, Fig 3b. This changes / to  (l + 2rL) and, 
replaces one term with (GL + GL+I)/2rL in the 
summation, Equation 9. In this procedure the xi are 
unchanged. If  relatively few large pores are sub- 
stituted, the isolated, large heteropores would hardly 
affect the magnitude of the effective sintering stress e. 
Significant decreases in the effective sintering stress ~, 
might result if the large pore would, at the same time, 
have large nearest neighbour spacings, but this would 
be an uncommon situation. As an example, the micro- 
structure shown in Fig. 2a indeed shows no such 
correlation between the spacing to the pores neigh- 
bouring the large pores and the large pore radius. 

The value of  the stress intensification factor, ~b, 
would, however, be affected in proportion to the 
increase in grain boundary porosity. If the stress 
intensification factor before introduction of the large 
pore is q~ and after the introduction of  the large pore 
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Figure 3 (a) Original pore distribution: N pores on length l. 
(b) Heteropore  distribution: large pore with radius, r L replaces a 
small pore, N pores on length l + 2r L. 

is q~2, then Equation l immediately shows that 

q~2 = [(/ q- 2rL)/l]~)l (14)  

The effect of the heteroporosity is thus mainly on the 
stress intensification factor. 

During the densification of some heterogeneous 
MgO powder compacts, containing the bimodal pore 
distribution shown in Fig. 2a, it was observed that the 
constant-stress creep rate remained proportional to 
the densification rate while the microstructure evolved 
from its initial bimodal structure Fig. 2a to a more 
uniform one Fig. 2b: the accompanying variations in 
the creep rates were considerable, but paralleled the 
variation in the densification strain rates [24]. The 
results and the discussion here supports the conclusion 
that the anomalous change in the densification rate 
observed during the sintering of these MgO compacts 
shown in Figs 2a and 2b, should be attributed to 
changes in the geometrical factor ~b, the stress intensi- 
fication factor. 

The stress intensification factor calculated by Beer6 
[14, 15] for three-dimensional powder compacts 
follows a relation of  the form 

q5 = exp (aP) (15) 

where a would be a factor only dependent on the 
dihedral angle, and P is the fractional porosity. When 
the pore coordination number is high, however, as for 
a large pore in a fine grained matrix, then this corre- 
lation between the dihedral angle and a cannot be 
maintained. The two types of  pores structures are 
shown in Figs 4a and 4b. The exponential dependence 
of the stress intensification factor pertains to relatively 
well equilibrated microstructures in which pores or 
pore channels are surrounded by three or four grains. 
With increasing pore coordination number, one could 
visualize that the pore geometry would correspond 
more and more to a random spherical one, for which 
~b ~ 1/porosity. Then, when grain growth occurs, 
with a consequent transformation of the heteropore 
shape from a spherical one to one that is described 
well by the Beer6 geometry, the maximum change 

Figure 4 (a) Large spherical pore with high coordination number. 
(b) Lens shaped pore with low coordination number. 

Aqb . . . .  in ~b resulting from grain growth can be esti- 
mated to be 

A(IDrnax = PL exp (aPL) (16) 

This factor increases with increasing heteroporosity, 
PL, and decreasing dihedral angle (high value of a). 

If, as in the earlier work by De Jonghe et al [1, 24], 
the large pores are initially considered to be inactive 
but later become active as a result of grain growth 
then two branches of q~ might be observed, as sketched 
in Fig. 5. For  the branch a, corresponding to the 
bimodal pore structure, one would have 

q~ = {1/(1 - PL)}  exp [a(P - PL)/(1 - -  PL)] 

(17) 

while for the later stage microstructure one has 

q~b = exp(aP)  (18) 

(Equation 18 differs slightly from the one given in (1), 
where the correction for the porosity of  the fine-pore 
matrix was not included.) 

The data together with the corresponding micro- 
structures reported earlier [17], generally conform to 
the assertion that the effects of the changes in the pore 
coordination number of large pores within a fine-pore 
matrix is chiefly on the stress intensification factor. 
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Figure 5 Two branches of 4' corresponding to the bimodal pore 
structure, calculated according to Equations 17 and 18, with a = 4 
and PL = 0.3.4'a corresponds to the initial value of 4' (Equation 17) 
while 4'b corresponds to the value of 4' after most of the 
heteroporosity has transformed to conform to 4'b (Equation 18). 
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Figure 6 Densification rate over constant-stress creep rate for CdO [17], at a constant grain size of 3 #m, plotted against the sintered density. 

4.  E v o l u t i o n  o f  s w i t h  s i n t e r e d  
d e n s i t y  

Numerous creep-sintering experiments [25] now are 
indicating that the creep strain rate over the densifi- 
cation rate remains relatively constant from the onset 
of densification to well into the final stages of sintering. 
The change in this ratio is usually not greater than a 
factor of 1.5. The relative constancy os the ratio of the 
densification rate to the constant-stress creep rate is a 
strong indication that the sintering stress, Y/~b, is also 
relatively constant in the same sintered density range. 
This change is considerably less than what would be 
expected on the basis of the present model, as well as 
on the basis of other models [15] in which the sintering 
stress would vary significantly as densification pro- 
ceeds. A near-constant sintering stress requires that 
the mean curvature of the pore surfaces remains con- 
stant, while the present model requires that the mean 
curvature increases with increasing densification. 
Clearly, the present model, while useful in relating the 
sintering stress to pore distributions and to pore 
coordination, does not contain those physical aspects 
that can predict the experimental observation of the 
near constancy of Z/qb over a wide sintered density 
range. 

The experimentally observed constancy of the 
sintering stress I /0  is likely to be attributable to the 
coarsening that occurs simultaneously with densifi- 
cation. Indeed, when the experimentally determined 
sintering stress of CdO [17] is considered grain size 
then, as expected from the model, a higher density 
compact has a higher sintering stress, as shown in Fig. 
6. Near constancy of the sintering stress during densi- 

fication could then prevail if the increase in the sintering 
stress due to densification-induced pore shrinkage and 
to pore coordination decrease is approximately com- 
pensated by the decrease in the sintering stress due to 
pore growth caused by coarsening. It would follow for 
systems in which coarsening is suppressed, e.g. by 
special choice of initial geometry or use of additives, 
that the sintering stress would have to increase with 
density. The results of Gregg and Rhines [8] on large, 
monosized copper spheres likely fall within this 
category, accounting for the difference in behaviour 
that the micron or submicron, non-monosized powder 
compacts have displayed. Further, in the conventional 
powder compact, a multitude of densification states 
are present simultaneously. The shift from open 
porosity to closed porosity, for example, does not take 
place suddenly, but develops gradually throughout the 
densifying compact [26]. This would also tend to aver- 
age changes in the sintering stress, especially in the 
early sintering stages. 

5. C o n c l u s i o n s  
Examination of the densification rate of simple, stress- 
coupled pore assemblies indicate that the sintering 
stress is determined by the mean of the pore sizes 
weighted according to their Voronoi cell size. In corre- 
lating the sintering stress with quantitative micro- 
scopy of polished section, it is thus necessary to incor- 
porate this additional microstructural information. 

Inclusion of relatively few, large heteropores is 
shown to affect the effective sintering stress, Z, very 
little. Instead, such pores increase the stress intensifi- 
cation factor. 
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The main effect of grain growth on the large 
heteropores is that they transform from a roughly 
spherical to a more lenticular shape, with a con- 
commitant increase in the stress intensification factor. 

The experimental constancy of the sintering stress 
E/q5 from the onset of densification throughout a 
wide range of sintered densities, is argued to result 
mainly from a dynamic balance between pore radius 
decrease due to densification and pore growth due to 
coarsening. 
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